Engineering Tripos Part IIA, 3F8: Inference, 2019-20

Leader

Dr R.E. Turner [1]

Lecturer

Dr R.E. Turner, Dr Jose Miguel Hernandez-Lobato

Lab Leader

Dr Jose Miguel Hernandez-Lobato

Timing and Structure

Lent Term.

Prerequisites

3F3 Statistical Signal Processing

Aims

The aims of the course are to:

- Provide a thorough introduction into the topic of statistical inference including maximum-likelihood and Bayesian approaches
- Introduce inference algorithms for regression, classification, clustering and sequence modelling
- · Introduce basic concepts in optimisation, dynamic programming and Monte Carlo sampling

Objectives

As specific objectives, by the end of the course students should be able to:

- Understand the use of maximum-likelihood and Bayesian inference and the strengths and weaknesses of both approaches.
- Implement methods to solve simple regression, classification, clustering and sequence modelling problems.
- Implement simple optimisation methods (gradient and coordinate descent, stochastic gradient descent), dynamic programming (Kalman filter or Viterbi decoding) and Monte Carlo sampling.

Content

Introduction to inference (2L)

decision theory estimation

Published on CUED undergraduate teaching site (https://teaching22-23.eng.cam.ac.uk)

Regression (3L)

Classification (2L)

Dimensionality Reduction (2L)

• Time i paris and in the second grant i grant i grant i de la compania de la com

Clustering (3L)

Sequence models (3L)

Markevoklodelistaen birabierritiadels modelsynamic programming

Very Basic Monte Carlo (introduced through the lectures above)

• •

Further notes

Lecture allocations above are approximate.

Coursework

Title: Logistic Regression for Binary Classification

To implement an algorithm for performing classification, called logistic regression, using gradient descent optimisation.

Learning objectives:

- understand the logistic regression model through visualising predictions
- how to apply maximum likelihood and MAP fitting using optimisation
- · how to implement gradient ascent
- understand how feature expansions can turn linear methods into non-linear methods

Practical information:

- Sessions will take place in the DPO, during week(s) [TBD].
- This activity involves a small amount of preliminary work [estimated duration 1hr].

Full Technical Report:

Engineering Tripos Part IIA, 3F8: Inference, 2019-20

Published on CUED undergraduate teaching site (https://teaching22-23.eng.cam.ac.uk)

Students will have the option to submit a Full Technical Report.

Booklists

There is no required textbook. However, the material covered is treated excellent recent text books:

Kevin P. Murphy Machine Learning: a Probabilistic Perspective [2], the MIT Press (2012).

David Barber Bayesian Reasoning and Machine Learning [3], Cambridge University Press (2012), available freely on the web.

Christopher M. Bishop Pattern Recognition and Machine Learning [4]. Springer (2006)

David J.C. MacKay Information Theory, Inference, and Learning Algorithms [5], Cambridge University Press (2003), available freely on the web.

Examination Guidelines

Please refer to Form & conduct of the examinations [6].

Last modified: 03/09/2019 10:31

Source URL (modified on 03-09-19): https://teaching22-23.eng.cam.ac.uk/content/engineering-tripos-part-iia-3f8-inference-2019-20

Links

- [1] mailto:ret26@cam.ac.uk
- [2] http://www.cs.ubc.ca/~murphyk/MLbook
- [3] http://www.cs.ucl.ac.uk/staff/d.barber/brml
- [4] http://research.microsoft.com/~cmbishop/PRML/index.htm
- [5] http://www.inference.phy.cam.ac.uk/mackay/itila/
- [6] https://teaching22-23.eng.cam.ac.uk/content/form-conduct-examinations